Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Brain Behav Immun ; 119: 554-571, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663775

ABSTRACT

Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.

2.
Brain Behav Immun ; 115: 631-651, 2024 01.
Article in English | MEDLINE | ID: mdl-37967664

ABSTRACT

Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Parkinson Disease/pathology , Drug Delivery Systems , Alzheimer Disease/pathology , Blood-Brain Barrier/pathology
3.
ACS Sens ; 8(4): 1404-1421, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37011238

ABSTRACT

Blood testing allows for diagnosis and monitoring of numerous conditions and illnesses; it forms an essential pillar of the health industry that continues to grow in market value. Due to the complex physical and biological nature of blood, samples must be carefully collected and prepared to obtain accurate and reliable analysis results with minimal background signal. Examples of common sample preparation steps include dilutions, plasma separation, cell lysis, and nucleic acid extraction and isolation, which are time-consuming and can introduce risks of sample cross-contamination or pathogen exposure to laboratory staff. Moreover, the reagents and equipment needed can be costly and difficult to obtain in point-of-care or resource-limited settings. Microfluidic devices can perform sample preparation steps in a simpler, faster, and more affordable manner. Devices can be carried to areas that are difficult to access or that do not have the resources necessary. Although many microfluidic devices have been developed in the last 5 years, few were designed for the use of undiluted whole blood as a starting point, which eliminates the need for blood dilution and minimizes blood sample preparation. This review will first provide a short summary on blood properties and blood samples typically used for analysis, before delving into innovative advances in microfluidic devices over the last 5 years that address the hurdles of blood sample preparation. The devices will be categorized by application and the type of blood sample used. The final section focuses on devices for the detection of intracellular nucleic acids, because these require more extensive sample preparation steps, and the challenges involved in adapting this technology and potential improvements are discussed.


Subject(s)
Nucleic Acids , Specimen Handling , Humans , Biomarkers/metabolism , Lab-On-A-Chip Devices
4.
ACS Omega ; 7(1): 823-836, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036749

ABSTRACT

Encapsulins, self-assembling icosahedral protein nanocages derived from prokaryotes, represent a versatile set of tools for nanobiotechnology. However, a comprehensive understanding of the mechanisms underlying encapsulin self-assembly, disassembly, and reassembly is lacking. Here, we characterize the disassembly/reassembly properties of three encapsulin nanocages that possess different structural architectures: T = 1 (24 nm), T = 3 (32 nm), and T = 4 (42 nm). Using spectroscopic techniques and electron microscopy, encapsulin architectures were found to exhibit varying sensitivities to the denaturant guanidine hydrochloride (GuHCl), extreme pH, and elevated temperature. While all three encapsulins showed the capacity to reassemble following GuHCl-induced disassembly (within 75 min), only the smallest T = 1 nanocage reassembled after disassembly in basic pH (within 15 min). Furthermore, atomic force microscopy revealed that all encapsulins showed a significant loss of structural integrity after undergoing sequential disassembly/reassembly steps. These findings provide insights into encapsulins' disassembly/reassembly dynamics, thus informing their future design, modification, and application.

5.
ACS Appl Mater Interfaces ; 13(7): 7977-7986, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33586952

ABSTRACT

Encapsulins, a prokaryotic class of self-assembling protein nanocompartments, are being re-engineered to serve as "nanoreactors" for the augmentation or creation of key biochemical reactions. However, approaches that allow encapsulin nanoreactors to be functionally activated with spatial and temporal precision are lacking. We report the construction of a light-responsive encapsulin nanoreactor for "on demand" production of reactive oxygen species (ROS). Herein, encapsulins were loaded with the fluorescent flavoprotein mini-singlet oxygen generator (miniSOG), a biological photosensitizer that is activated by blue light to generate ROS, primarily singlet oxygen (1O2). We established that the nanocompartments stably encased miniSOG and in response to blue light were able to mediate the photoconversion of molecular oxygen into ROS. Using an in vitro model of lung cancer, we showed that ROS generated by the nanoreactor triggered photosensitized oxidation reactions which exerted a toxic effect on tumor cells, suggesting utility in photodynamic therapy. This encapsulin nanoreactor thus represents a platform for the light-controlled initiation and/or modulation of ROS-driven processes in biomedicine and biotechnology.


Subject(s)
Antineoplastic Agents/pharmacology , Biomedical Engineering , Fluorescent Dyes/pharmacology , Light , Lung Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Flavoproteins/chemistry , Flavoproteins/metabolism , Fluorescent Dyes/chemistry , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Nanocomposites/chemistry , Particle Size , Photosensitizing Agents/chemistry , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Singlet Oxygen/analysis , Singlet Oxygen/metabolism , Spectrometry, Fluorescence , Surface Properties
6.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486317

ABSTRACT

The bifunctional linker-protein G (LPG) fusion protein comprises a peptide (linker) sequence and a truncated form of Streptococcus strain G148 protein G (protein G). The linker represents a multimeric solid-binding peptide (SBP) comprising 4 × 21-amino acid sequence repeats that display high binding affinity towards silica-based materials. In this study, several truncated derivatives were investigated to determine the effect of the SBP oligomerization on the silica binding function of LPG (for the sake of clarity, LPG will be referred from here on as 4 × LPG). Various biophysical characterization techniques were used to quantify and compare the truncated derivatives against 4 × LPG and protein G without linker (PG). The derivative containing two sequence repeats (2 × LPG) showed minimal binding to silica, while the truncated derivative with only a single sequence (1 × LPG) displayed no binding. The derivative containing three sequence repeats (3 × LPG) was able to bind to silica with a binding affinity of KD = 53.23 ± 4.5 nM, which is 1.5 times lower than that obtained for 4 × LPG under similar experimental conditions. Circular dichroism (CD) spectroscopy and fluorescence spectroscopy studies indicated that the SBP degree of oligomerization has only a small effect on the secondary structure (the linker unravels the beginning of the protein G sequence) and chemical stability of the parent protein G. However, based on quartz crystal microbalance with dissipation monitoring (QCM-D), oligomerization is an important parameter for a strong and stable binding to silica. The replacement of three sequence repeats by a (GGGGS)12 glycine-rich spacer indicated that the overall length rather than the SBP oligomerization mediated the effective binding to silica.

7.
Metab Eng ; 57: 162-173, 2020 01.
Article in English | MEDLINE | ID: mdl-31726216

ABSTRACT

Glucaric acid (GlucA) is a valuable glucose-derived chemical with promising applications as a biodegradable and biocompatible chemical in the manufacturing of plastics, detergents and drugs. Recently, there has been a significant focus on producing GlucA microbially (in vivo) from renewable materials such as glucose, sucrose and myo-inositol. However, these in vivo GlucA production processes generally lack efficiency due to toxicity problems, metabolite competition and suboptimal enzyme ratios. Synthetic biology and accompanying cell-free biocatalysis have been proposed as a viable approach to overcome many of these limitations. However, cell-free biocatalysis faces its own limitations for industrial applications due to high enzyme costs and cofactor consumption. We have constructed a cell-free GlucA pathway and demonstrated a novel framework to overcome limitations of cell-free biocatalysis by i) the combination of both thermostable and mesophilic enzymes, ii) incorporation of a cofactor regeneration system and iii) immobilisation and recycling of the pathway enzymes. The cell-free production of GlucA was achieved from glucose-1-phosphate with a titre of 14.1 ±â€¯0.9 mM (3.0 ±â€¯0.2 g l-1) and a molar yield of 35.2 ±â€¯2.3% using non-immobilised enzymes, and a titre of 8.1 ±â€¯0.2 mM (1.70 ±â€¯0.04 g l-1) and a molar yield of 20.2 ±â€¯0.5% using immobilised enzymes with a total reaction time of 10 h. The resulting productivities (0.30 ±â€¯0.02 g/h/l for free enzymes and 0.170 ±â€¯0.004 g/h/l for immobilised enzymes) are the highest productivities so far reported for glucaric acid production using a synthetic enzyme pathway.


Subject(s)
Biocatalysis , Glucaric Acid/metabolism , Metabolic Engineering , Synthetic Biology , Cell-Free System/enzymology
8.
Biomolecules ; 9(12)2019 12 03.
Article in English | MEDLINE | ID: mdl-31816991

ABSTRACT

Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Transitional Cell/diagnosis , Glypicans/metabolism , Luminescent Agents/pharmacology , Urinary Bladder Neoplasms/diagnosis , Antibodies, Monoclonal/chemistry , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Humans , Luminescent Agents/chemistry , Nanoparticles/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Spectrometry, Fluorescence , Urinary Bladder Neoplasms/metabolism
9.
Biomolecules ; 10(1)2019 12 18.
Article in English | MEDLINE | ID: mdl-31861313

ABSTRACT

Linker-protein G (LPG) is a bifunctional fusion protein composed of a solid-binding peptide (SBP, referred as the "linker") with high affinity to silica-based compounds and a Streptococcus protein G (PG), which binds antibodies. The binding mechanisms of LPG to silica-based materials was studied using different biophysical techniques and compared to that of PG without the linker. LPG displayed high binding affinity to a silica surface (KD = 34.77 ± 11.8 nM), with a vertical orientation, in comparison to parent PG, which exhibited no measurable binding affinity. Incorporation of the linker in the fusion protein, LPG, had no effect on the antibody-binding function of PG, which retained its secondary structure and displayed no alteration of its chemical stability. The LPG system provided a milder, easier, and faster affinity-driven immobilization of antibodies to inorganic surfaces when compared to traditional chemical coupling techniques.


Subject(s)
Peptides/chemistry , Silicon Dioxide/chemistry , Adsorption , Antibodies/chemistry , Circular Dichroism , Kinetics , Surface Plasmon Resonance
10.
Nanomaterials (Basel) ; 9(9)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527483

ABSTRACT

In recent years, it has become apparent that cancer nanomedicine's reliance on synthetic nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due to a poor understanding of their "bio-nano" interactions. Protein-based nanoparticles (PNPs) are rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the future directions for PNP research and what challenges must be overcome to ensure their translation into the clinic.

11.
Article in English | MEDLINE | ID: mdl-31157220

ABSTRACT

In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the ß-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.

12.
Anal Chim Acta ; 1066: 136-145, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31027529

ABSTRACT

Glucaric acid (GlucA) has been identified as one of the top 10 potential bio-based chemicals for replacement of oil-based chemicals. Several synthetic enzyme pathways have been engineered in bacteria and yeast to produce GlucA from glucose and myo-inositol. However, the yields and titres achieved with these systems remain too low for the requirements of a bio-based GlucA industry. A major limitation for the optimisation of GlucA production via synthetic enzymatic pathways are the laborious analytical procedures required to detect the final product (GlucA) and pathway intermediates. We have developed a novel method for the simple and simultaneous analysis of GlucA and pathway intermediates to address this limitation using mixed mode (MM) HILIC and weak anion exchange chromatography (WAX), referred to as MM HILIC/WAX, coupled with RID. Isocratic mobile phase conditions and the sample solvent were optimised for the separation of GlucA, glucose-1-phosphate (G1P), glucose-6-phosphate (G6P), inositol-1-phosphate (I1P), myo-inositol and glucuronic acid (GA). The method showed good repeatability, precision and excellent accuracy with detection and quantitation limits (LOD and LOQ) of 1.5-2 and 577 mM, respectively. The method developed was used for monitoring the enzymatic synthesis of the final step in the GlucA pathway, and showed that GlucA was produced from GA with near 100% conversion and a titre of 9.2 g L-1.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Biocatalysis , Chromatography, Liquid/methods , Glucaric Acid/metabolism , Carbohydrate Conformation , Escherichia coli/enzymology , Glucaric Acid/chemistry , Rhizobiaceae/enzymology
13.
N Biotechnol ; 52: 9-18, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-30954671

ABSTRACT

The interactions between biomolecules and solid surfaces play an important role in designing new materials and applications which mimic nature. Recently, solid-binding peptides (SBPs) have emerged as potential molecular building blocks in nanobiotechnology. SBPs exhibit high selectivity and binding affinity towards a wide range of inorganic and organic materials. Although these peptides have been widely used in various applications, there is a need to understand the interaction mechanism between the peptide and its material substrate, which is challenging both experimentally and theoretically. This review describes the main characterisation techniques currently available to study SBP-surface interactions and their contribution to gain a better insight for designing new peptides for tailored binding.


Subject(s)
Models, Molecular , Peptides/metabolism , Amino Acid Sequence , Biophysical Phenomena , Peptides/chemistry , Protein Binding
14.
J Ind Microbiol Biotechnol ; 46(6): 769-781, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30806871

ABSTRACT

Enzymatic degradation of the ß-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-ß-D-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis ß-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.


Subject(s)
Euglena gracilis/enzymology , Flow Cytometry/methods , Glucans/analysis , Escherichia coli/metabolism , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , High-Throughput Nucleotide Sequencing , Hydrolysis , Proteomics
15.
Biotechnol Adv ; 37(1): 91-108, 2019.
Article in English | MEDLINE | ID: mdl-30521853

ABSTRACT

Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.


Subject(s)
Cell-Free System/metabolism , Enzymes/metabolism , Metabolic Engineering/trends , Synthetic Biology , Biocatalysis , Cell-Free System/chemistry , Computer Simulation , Enzymes/chemistry , Enzymes/genetics , Humans , Kinetics , Organic Chemicals/chemistry , Organic Chemicals/metabolism
16.
Genes (Basel) ; 9(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30041491

ABSTRACT

In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.

17.
Carbohydr Polym ; 196: 339-347, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29891305

ABSTRACT

A hydrothermal microwave pretreatment was established to facilitate the enzymatic production of soluble bioactive ß-1,3-glucans from the recalcitrant substrate paramylon. The efficacy of this pretreatment was monitored with a newly developed direct Congo Red dye-based assay over a range of temperatures. Microwave pretreatment at 170 °C for 2 min resulted in a significantly enhanced enzymatic hydrolysis of paramylon. The action of endo-ß-1,3- and exo- ß-1,3-glucanases on the microwave-pretreated paramylon produced soluble ß-1,3-glucans with degrees of polymerisation (DP) ranging from 2-59 and 2-7, respectively. In comparison, acid-mediated hydrolysis of untreated paramylon resulted in ß-1,3-glucans with a DP range of 2-38. The hydrolysates were assayed on their immunostimulatory effect on murine macrophages by measuring the production of the inflammation-linked marker tumour necrosis factor alpha (TNFα) using immunofluorescence. All of the tested hydrolysis products were shown to induce TNFα production, with the most significant immunostimulatory effect observed with the hydrolysate from the exo-ß-1,3-glucanase treatment.


Subject(s)
Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/pharmacology , Enzymes/metabolism , Glucans/chemistry , Microwaves , beta-Glucans/chemical synthesis , beta-Glucans/pharmacology , Adjuvants, Immunologic/chemistry , Animals , Cell Line , Chemistry Techniques, Synthetic , Hydrolysis , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Solubility , Transition Temperature , beta-Glucans/chemistry
18.
ACS Appl Mater Interfaces ; 10(20): 17437-17447, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29701945

ABSTRACT

Nanoparticle surface engineering can change its chemical identity to enable surface coupling with functional biomolecules. However, common surface coupling methods such as physical adsorption or chemical conjugation often suffer from the low coupling yield, poorly controllable orientation of biomolecules, and steric hindrance during target binding. These issues limit the application scope of nanostructures for theranostics and personalized medicine. To address these shortfalls, we developed a rapid and versatile method of nanoparticle biomodification. The method is based on a SiO2-binding peptide that binds to the nanoparticle surface and a protein adaptor system, Barnase*Barstar protein pair, serving as a "molecular glue" between the peptide and the attached biomolecule. The biomodification procedure shortens to several minutes, preserves the orientation and functions of biomolecules, and enables control over the number and ratio of attached molecules. The capabilities of the proposed biomodification platform were demonstrated by coupling different types of nanoparticles with DARPin9.29 and 4D5scFv-molecules that recognize the human epidermal growth factor receptor 2 (HER2/neu) oncomarker-and by subsequent highly selective immunotargeting of the modified nanoparticles to different HER2/neu-overexpressing cancer cells in one-step or two-step (by pretargeting with HER2/neu-recognizing molecule) modes. The method preserved the biological activity of the DARPin9.29 molecules attached to a nanoparticle, whereas the state-of-the-art carbodiimide 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-hydroxysulfosuccinimide method of conjugation led to a complete loss of the functional activity of the DARPin9.29 nanoparticle-protein complex. Moreover, the method allowed surface design of nanoparticles that selectively interacted with antigens in complex biological fluids, such as whole blood. The demonstrated capabilities show this method to be a promising alternative to commonly used chemical conjugation techniques in nanobiotechnology, theranostics, and clinical applications.

19.
ACS Sens ; 3(2): 320-326, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29308890

ABSTRACT

We report an aggregation-induced emission fluorogen (AIEgen)-based turn-on fluorescent aptasensor able to detect the ultrasmall concentration of intracellular IFN-γ. The aptasensor consists of an IFN-γ aptamer labeled with a fluorogen with a typical aggregation-induced emission (AIE) characteristic, which shows strong red emission only in the presence of IFN-γ. The aptasensor is able to effectively monitor intracellular IFN-γ secretion with the lowest detection limit of 2 pg mL-1, and it is capable of localizing IFN-γ in live cells during secretion, with excellent cellular permeability and biocompatibility as well as low cytotoxicity. This probe is able to localize the intracellular IFN-γ at a low concentration <10 pg mL-1, and it is successfully used for real-time bioimaging. This simple and highly sensitive sensor may enable the exploration of cytokine pathways and their dynamic secretion process in the cellular environment. It provides a universal sensing platform for monitoring a spectrum of molecules secreted by cells.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Interferon-gamma/analysis , Animals , Cell Line , Mice , Sensitivity and Specificity
20.
Adv Exp Med Biol ; 1030: 21-36, 2017.
Article in English | MEDLINE | ID: mdl-29081048

ABSTRACT

Some peptides are able to bind to inorganic materials such as silica and gold. Over the past decade, Solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to a diverse range of inorganic surfaces e.g. metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers and minerals. They can be used in applications such as protein purification and synthesis, assembly and the functionalization of nanomaterials. They offer simple and versatile bioconjugation methods that can increase biocompatibility and also direct the immobilization and orientation of nanoscale entities onto solid supports without impeding their functionality. SBPs have been employed in numerous nanobiotechnological applications such as the controlled synthesis of nanomaterials and nanostructures, formation of hybrid biomaterials, immobilization of functional proteins and improved nanomaterial biocompatibility. With advances in nanotechnology, a multitude of novel nanomaterials have been designed and synthesized for diagnostic and therapeutic applications. New approaches have been developed recently to exert a greater control over bioconjugation and eventually, over the optimal and functional display of biomolecules on the surfaces of many types of solid materials. In this chapter we describe SBPs and highlight some selected examples of their potential applications in biomedicine.


Subject(s)
Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Peptides/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Biocompatible Materials/metabolism , Metals/chemistry , Metals/metabolism , Oxides/chemistry , Oxides/metabolism , Peptides/metabolism , Protein Binding , Semiconductors , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...